Rutherford Backscattering (II)

RBS is a powerful technique for assessing the chemical composition, crystalline quality, and depth-dependent structure of samples.

Chemical composition
- Derives from the fact that the target nucleus has a finite mass
- Different mass of target nucleus (different element) will have a different recoil energy
 \[\Rightarrow \text{this means the backscattered ion energy will depend on the target nuclei} \]

Crystalline quality
- Derives from the effect of channeling and blocking
- Ions incident along crystalline symmetry directions will be channeled and leads to dramatic reduction of the backscattered intensity
- Ions not incident along crystalline symmetry directions will have higher backscattering intensity at any backscattering angle
- Poor crystalline quality can lead to higher backscattering
- Difference between “aligned” and “random” spectra an indication of the crystalline quality
- Can also see the effects of impurities in the sample

Depth-dependent structure
- Layered samples can be investigated
- Different elemental layers will be distinguishable in the energy-dependent backscattering intensity
- Modeling can lead to a determination of the depth-dependence of the elemental concentrations
- Usually requires some information from the sample grower in order to best model the data
Interesting case: Scandium-rich growth conditions

- leads to high crystalline quality but with N-vacancies, as seen above
Scandium Nitride grown under Sc-rich conditions

STM Image of sample under UHV conditions

FIG. 4. STM image of ScN(001) surface grown under scandium rich conditions. Sample bias $V = +2.0 \text{ V}$; tunneling current = 0.2 nA.

- Phase Stability, Nitrogen Vacancies, Growth Mode, and Surface Structure of ScN(001) Under Sc-rich Conditions
 Hamad A. H. Al-Brithen, Eugen M. Trifan, David C. Ingram, Arthur R. Smith, and Daniel Gall
RBS Study of Sc-rich grown sample

- Phase Stability, Nitrogen Vacancies, Growth Mode, and Surface Structure of ScN(001) Under Sc-rich Conditions
 Hamad A. H. Al-Brithen, Eugen M. Trifan, David C. Ingram, Arthur R. Smith, and Daniel Gall
Manganese Nitride grown by molecular beam epitaxy develops into various crystalline phases having different compositions.

The compositions of samples grown with different phase were measured by RBS.

- θ-phase: MnN ($\sim 1:1$ Mn:N)
- η-phase: Mn$_3$N$_2$ ($\sim 3:2$ Mn:N)
- ε-phase: Mn$_4$N$_1$ ($\sim 4:1$ Mn:N)

Crystalline Phase and Orientation Control of Manganese Nitride Grown on MgO(001) by Molecular Beam Epitaxy

Haiqiang Yang, Hamad Al-Brithen, Arthur R. Smith, Eugen Trifan, and David C. Ingram

Results of RBS measurements of samples grown under different conditions resulting in the different phases:

<table>
<thead>
<tr>
<th>Phase</th>
<th>θ-Mn$_2$</th>
<th>η_\perp-Mn$_3$N$_2$</th>
<th>η_\parallel-Mn$_3$N$_2$</th>
<th>ϵ-Mn$_3$N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{N}{N_0}$ (Mn$_{\text{III}}$)</td>
<td>1:1.00</td>
<td>3:2.70</td>
<td>3:2.04</td>
<td>4:1.68</td>
</tr>
<tr>
<td>$f_N = \frac{N}{N_0}$ (%)</td>
<td>50.0</td>
<td>47.0</td>
<td>40.0</td>
<td>30.0</td>
</tr>
<tr>
<td>$f_N = 100% - f_x$ (%)</td>
<td>50.0</td>
<td>53.0</td>
<td>59.0</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Haiqiang Yang, Hamad Al-Brithen, Arthur R. Smith, Eugen Trifan, and David C. Ingram