Preparation of Clean, Well-Defined Surfaces

- There are several methods.
 - Not all methods are performed in ultra-high-vacuum, but many do use, or are performed in, UHV

Methods

1. crystal cleaving in UHV (or in solution)
 - useful but limited

2. sputtering and/or annealing
 - also limited to certain types of surfaces

3. epitaxial growth
 - most versatile with many technological applications
 - new material is deposited
 a. molecular beam epitaxy
 b. chemical beam epitaxy
 c. metal-organic chemical vapor deposition
 d. pulsed laser deposition
 e. sputtering
Surface Preparation

1. Cleaving
 - Works well for specific sample types
 - Requires brittle samples
 - Limited to only certain crystalline orientations

Since this can be done in UHV using mechanical manipulators ➔ clean, fresh surface(s) of interest (2)

Typically this method is used for semiconductors or insulators

One excellent application is to prepare large, atomically-flat semiconductor surfaces:

- (110) surfaces of III-V semiconductors such as GaAs(110), InP(110), etc.
 - in the zinc-blende structure

- (110) surface is non-polar so cleaves very easily
other semiconductor applications:

- Si(111) and Ge(111) prepared nicely by cleaving.
- Fresh-cleaved Si(111) has 2x1 superstructure (and Ge(111))
- Annealing leads to Si(111) 7x7 superstructure periodicity or Ge(111) 2x8 " " in diffraction.

- Also alkali halides
 - NaCl
 - KCl
 - ...

- Some oxides as well
 - ZnO (wurtzite)
 - TiO₂
 - SnO₂
An Excellent Application of Cleaning:

Cross-Sectional Scanning Tunneling Microscopy of Semiconductor heterostructures and homostructures

This is due to the fact that the (110) surface is perpendicular to the (001) epitaxial growth direction.

Method

1. Begin with epitaxial structure grown by, for example, molecular beam epitaxy (MBE).

 ![Diagram of semiconductor wafer and epilayer](image)

2. Cut the epilayer into approximately sized small pieces.

 - This can be done by hand or more efficiently using a dicing saw.

 ![Diagram of dicing saw](image)
3. Create a cleaning scratch or notch, but not all the way across the epilayer. The cleave will propagate from the point of nucleation (notch or scratch mark).

4. Mount the piece in a sample holder.

5. Load sample/sample holder into UHV chamber.

6. Cleave the sample by pushing on piece.

7. Place sample into microscope.
4 Unit Cell GaAs/2 Unit Cell AlAs
Short Period Superlattice

(a)

(b)

vertical average

missing unit cell

(c)

single

"Dilute" (Al)GaAs

Smith et al., APL 69, 1214 (1996).
2. Ion Bombardment and Annealing

- Ion bombardment: to remove surface contamination
- Annealing: to restore the surface structure

Bombarding
- Oxygen "kicked out"
- Oxide or contamination layer

Annealing
- Rough or disordered surface
- Restructured, smooth, mirror-like, atomically well-ordered
Bombardment / Annealing

- to get a good surface, sometimes many cycles are required
- annealing sometimes causes bulk impurities to diffuse to the surface

- advantage: the same sample surface can be refreshed over and over again, often just be annealing without further sputtering

- useful for elemental samples

 single element

 - noble metals (Au, Cu, Ag, ...)

 - other metals (Fe, Mo, ...)

 - elemental semiconductors (e.g., Si, Ge)

- disadvantage: not very effective for compound samples such as GaAs, or GaN

 - reason is that it is not possible to control or maintain the surfaces stoichiometry, which is the ratio between different elements e.g. Ga : N ratio
3. **Epitaxial Growth Methods**

- Very versatile, flexible
- Many technological applications
- Use to produce clean, smooth surfaces of elemental or compound materials with various crystalline orientations
- Can control the surface stoichiometry
- Applicable to metals, semiconductors, oxides, ...
- Can control impurity levels — doping
- Can grow multi-layer "heterostructures" and "homostructures"
- Can control growth with atomic-layer precision

The most famous and versatile of these epitaxial growth methods is:

Molecular Beam Epitaxy (MBE)
Sample is mounted on a sample holder using either metal clips or metal bonding, typically.

- Clip method: very useful but possible to contaminate sample surface by touching it with clip.
- Mo typical or Ta clip
- Typical Indium bonding
- Water held on by surface tension if it melts
- Too high Temp → it may not work

H. Lüth, Surfaces and Interfaces of Solid Materials, p. 48 (3rd Ed.)
MBE

- Surface growth occurs through arrival of atoms and/or simple molecules at the surface with a controlled flux rate Γ

 \[\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \]

 Sample is often heated during growth \Rightarrow heating \Rightarrow surface diffusion

- The growth rate is dependent on the flux dosage

 unit of dosage is the Langmuir

 \[1 \text{ Langmuir} = \text{dosage corresponding to exposure of surface for 1 second to a gas pressure of } 10^{-6} \text{ Torr} \]

 or, e.g., for 100 s at 10^{-8} Torr
a layer-by-layer growth means that the next layer begins after the current layer is completed.
The flux at sample in molecular beam epitaxy begins with:

\[
\Gamma = \frac{P}{2m\langle v \rangle}
\]

\[
\langle v \rangle = \sqrt{\frac{3kT}{m}}
\]

\[
\rightarrow \Gamma = \frac{P}{2\sqrt{3mkT}} \quad \text{Flux at liquid-vapor interface}
\]

\[
\text{sample}
\]

\[
\text{divergence of flux leads to geometrical factor of}
\]

\[
\frac{a}{\pi L^2}
\]

\[
\rightarrow \Gamma = \frac{pa}{2\pi L^2 \sqrt{3mkT}}
\]

\[
\Gamma \approx \frac{pa}{\pi L^{3/2} \sqrt{2\pi mkT}}
\]
Note that the p is $p(T)$ where T is the temperature of the liquid melt.

Vapor pressure vs. liquid melt temperature

![Log-log plot]

$P \quad (\log \text{scale})$

$T \quad (\log \text{scale})$

Typical curve

Example:

From our experience, we get a flux at the sample of about

$$\Gamma = 2 \times 10^{-4} \text{ /cm}^2 \text{s}$$

Let's calculate the expected flux assuming Ga liquid surface is $T_{Ga} = 950^\circ \text{C}$.

From vapor pressure table:

$\text{Ga: } 950^\circ \text{C} \rightarrow p(950^\circ \text{C}) = 2 \times 10^{-4} \text{ atm}$
Question:
Can you determine the flux based on the measured film growth rate?

⇒ Yes! or at least the part of flux which was incorporated into the film - the total incident flux could be larger.

i.e. measuring the film thickness in Å (t)
and the growth time is T (T)

⇒\[\text{growth rate } \Gamma = \frac{t}{T} = \frac{\text{Å}}{\text{s}} \]

Then we just need to know the number density of the flux atoms in the layer, \(n \)

\[n = \frac{N}{V} \text{ = ideally units of } \frac{\text{Å}^{-1}}{\text{cm}^2 \text{Å}} \]

⇒ \(\Gamma \times n = \frac{t}{T} \times n = \frac{\text{Å}}{\text{s}} \times \frac{1}{\text{cm}^2 \text{Å}} = \frac{\text{Å}^{-1}}{\text{s}} = \Gamma \)

Example: Sc atoms in ScN

rocksalt structure

conventional cube is 4.50 Å on cube edge

and contains 4 Sc atoms \(4.50\text{Å} = 4.50 \times 10^{-8} \text{cm} \)

⇒ \(n = \frac{4}{(4.50 \times 10^{-8}\text{cm})^3(4.50 \text{Å})} = 4.39 \times 10^{-4} \text{ Å}^{-2} \text{s}^{-1} \)