Fluctuations in the relaxation of a 2D granular fluid

Horacio E. Castillo

Department of Physics and Astronomy, Ohio University, Athens, OH

Department of Chemical and Biomolecular Engineering, Ohio University, November 23 2015
Outline

1. Glass Transitions and dynamical heterogeneity
 - Glass transitions
 - Dynamical heterogeneity

2. Relaxation of a fluidized granular system
 - 2D granular system
 - Relaxation

3. Fluctuations in the relaxation
 - Observing spatial fluctuations (Dynamical Heterogeneity)
 - Strength and spatial extent of the spatial fluctuations
At the glass transition, the system “falls out” of equilibrium. Viscosities and relaxation times increase dramatically as a material cools towards T_g.
Dynamical heterogeneity: viscosity - diffusion decoupling

\[\frac{D\eta}{T} = \text{constant} \]

(Ediger 2000)

(Angell et al. 2000)
Dynamical heterogeneity: non-exponential relaxation

\[C(t) = C_0 \exp\left(-\left(t/\tau\right)^\beta\right) = \int_0^\infty g(\tau) \exp\left(-t/\tau\right) d\tau = V^{-1} \int d^d r \exp\left(-t/\tau\right) \]

\[(0 < \beta < 1) \]

(Richert 2002)

(Ediger 2000)
Dynamical heterogeneity: particle tracking

Colloid: confocal microscopy (Courtland and Weeks 2003)

Figure 4. Locations of the 10% most mobile particles at three different ages t_w. For each picture, mobility was determined by calculating displacements Δr over an interval $[t_w, t_w + \Delta T]$, with $\Delta T = 10$ min. Left: $t_w = 10$ min, and $\Delta r > 0.43 \, \mu m$ for the most mobile particles. Middle: $t_w = 55$ min, $\Delta r > 0.34 \, \mu m$. Right: $t_w = 95$ min, $\Delta r > 0.33 \, \mu m$. The data are the same as shown in previous figures, and the choices of t_w correspond to local maxima of γ in figure 2(a). The particles are drawn to scale (2.36 μm diameter) and the box shown is the entire viewing volume (within a much larger sample chamber).
Dynamical heterogeneity: polarization fluctuations

PVAc: dielectric fluctuations (Vidal Russell & Israeloff, Nature (2000))
- Polymer glass, $T = T_g - 9K$
- Transient appearance of strongly fluctuating region under tip
- Heterogeneity lifetime \approx relaxation time
Granular system and simulations

- 50:50 mixture of hard disks \(r_2/r_1 = 1.43 \).
- \(N_{\text{tot}} = 4 \times 10^6 \) (in most cases).
- Packing fractions \(\phi = 0.60 \cdots 0.805 \).
- Collisions: \(\mathbf{n} \cdot (\mathbf{v}'_i - \mathbf{v}'_j) = -\epsilon \mathbf{n} \cdot (\mathbf{v}_i - \mathbf{v}_j) \).
- Restitution coeff \(\epsilon = 0.7, 0.8, 0.9 \) (inelastic), \(\epsilon = 1.0 \) (elastic).
- Energy restored via random “kicks” to pairs of particles:
 \(m_i \mathbf{v}'_i = m_i \mathbf{v}_i + p_{Dr} R_i \).
Probing relaxation

- Glass \leftrightarrow “random solid”.
- Solid \leftrightarrow “frozen”, no/slow change in time.
- Two-time correlation $C(t, t_w)$:

\[C(t, t_w) \approx \begin{cases}
 1 & : \text{unchanged between } t_w \text{ and } t \\
 0 & : \text{correlation lost between } t_w \text{ and } t
\end{cases} \]

- Spin glass: $S_i = \pm 1 \rightarrow C(t, t_w) \equiv \frac{1}{N} \sum_i S_i(t)S_i(t_w)$.
- Structural glasses / granulars: $\vec{r}_i \rightarrow Q(t) \equiv \frac{1}{N} \sum_i w_i(t)$

\[w_i(t) \equiv \theta(a - |\vec{r}_i(t) - \vec{r}_i(0)|). \]

Relaxation time $\tau_\alpha \leftrightarrow Q(\tau_\alpha) = 1/e$.

\[\begin{array}{c|c}
 Q(t) & 1/\tau_\alpha \\
 \hline
 1 & 10^0 \\
 0.9 & 10^1 \\
 0.8 & 10^2 \\
 0.7 & 10^3 \\
 0.6 & 10^4 \\
 0.5 & 10^5 \\
 0.4 & 10^6 \\
 0.3 & 10^7 \\
 0.2 & 10^8 \\
 0.1 & 10^9 \\
\end{array} \]
Relaxation function and relaxation time

Relaxation function $Q(t)$ for $\phi = 0.60, \cdots, 0.805$

![Graph showing relaxation function $Q(t)$ for different packing fractions.](image)

Relaxation time vs. packing fraction

$\tau_\alpha \propto (\phi_0 - \phi)^{\gamma_\tau}$

$\tau_\alpha \propto \exp[B/(\phi_0 - \phi)]$

(Avila, HC, Vollmayr-Lee & Zippelius, 2015, submitted)
Scaling of the relaxation

No time-density superposition

Two-parameter scaling

\[Q(t) \approx \left(\frac{t}{\tau_0} \right)^{-\beta} \]

(Avila, HC, Vollmayr-Lee & Zippelius, 2015, submitted)
Dynamical heterogeneity: slow and fast regions

(a) $\phi = 0.60$
(b) $\phi = 0.78$
(c) $\phi = 0.805$

Mobility:
- Slow $< a$
- Fast $> 3a$

(Avila, HC, Vollmayr-Lee & Zippelius, 2015, submitted)
Dynamical susceptibility

\[\chi_4(t) = N \left[\langle Q^2(t) \rangle - \langle Q(t) \rangle^2 \right] \]

Horacio E. Castillo

Fluctuations in the relaxation of a 2D granular fluid
Four point dynamic structure factor

$W(q, t) \equiv \frac{1}{N} \sum_i w_i(t) \exp(iq \cdot r_i(0))$

$S_4(q, t) = N \left[\langle W(q, t)W(-q, t) \rangle - | \langle W(q, t) \rangle |^2 \right]$

Correlation length ξ and dynamic susceptibility χ_4

\[S_4(q, t) = \frac{\chi_4(t)}{1 + [q\xi(t)]^2} \]

Dependence on restitution coefficient ϵ

Scaling of correlation volume with correlation length

\[\chi_4(\tau_\alpha) \propto \xi^{1.58} \]

Summary

- Strong slowdown of relaxation as packing fraction is increased.
- The relaxation function does not satisfy time-density superposition, but it satisfies two-parameter scaling with a simple scaling function.
- Slow and fast particles are found in correlated regions, with size that grows dramatically with packing fraction ϕ.
- The strength of the fluctuations, probed by $\chi_4(t)$, has a peak whose position and strength increase with ϕ.
- The 4-point dynamic structure factor for all ϕ and ϵ collapse as a function of ξq.
- Both $\chi_4(\tau_\alpha)$ and $\xi(\tau_\alpha)$ have power law divergences with ϕ.
- The fluctuations are strongly dependent on the degree of inelasticity.
- The relation between correlated volume ($\propto \chi_4(\tau_\alpha)$) and correlation length ($\xi(\tau_\alpha)$) is a robust, ϵ-independent, power law, with power $p \sim 1.6$ corresponding to a fractal object.
Thanks!!

- Funding from DOE DE-FG02-06ER46300 and from DFG.
- Collaborators:
 - Karina Avila Ohio U. and Georg August U.
 - Andrea Fiege Georg August U.
 - Katharina Vollmayr-Lee Bucknell University
 - Annette Zippelius Georg August U.