Chapter 3

The Klein-Gordon Equation

3.1 Physical Problems of the Klein-Gordon Equation

The Klein-Gordon equation (2.66) fulfills the laws of special relativity, but contains two
fundamental problems, which have to be taken care of for the equation to be physically

meaningful.

The first problem becomes obvious when considering the solutions of the different equa-

tions. Using the ansatz

with

One obtains from (2.71)

or

w($> = a ei(E-F — wt)
= qe k" (3.1)

al—kﬂk” + (%ﬂ =0 (3.3)
o= kkt = (%)2 (3.4)



from which follows

B — :I:\/EQ + (%)2 (3.5)

This means that the Klein-Gordon equation allows negative energies as solution. Formally,
one can see that from the square of Eq. (2.60) the information about the sign is lost.
However, when starting from Eq. (2.71) all solutions have to be considered, and there is
the problem of the physical interpretation of negative energies.

The second problem with the Klein-Gordon equation is less obvious. It occurs when inter-
preting the function ) (x) as probability amplitude. Interpretation of 1)(x) as probability

amplitude is only possible if there exists a probability density p(z) and a current j (x)
that fulfill a continuity equation

—

) 3}
5 P TV =0, (3.6)

which guarantees that no ”probability” is lost.

Since we deal with a covariant equation, we define

3(x) = cpl(a)
0
: 7’ ()
K s = - 3.7
and obtain the covariant form
o . .
OxH =058 = 0. (3.8)

Eqgs. (3.6) and (3.7) correspond in form and content the charge conservation in electro-
dynamics.

Non-relativistically one has

pNr = YT
5 h o
vk = gy W0V Y (3.9



and thus one expects in the relativistic case also bilinear expressions in v for p and j If
one defines a density p according to (3.9) with the solution (3.1), it is easy to show that
this density does not fulfill a continuity equation. This has to be expected since j* has
to be a four-vector so that (3.7) is valid in all Lorentz systems. Thus, it is obvious to
generalize (3.9) to

o= %@b* 5 (3.10)
where o
A 9" B = A* (9"B) — (9"A")B. (3.11)
Consider
9, j* = ;—maﬂ (zp o w)
h
= 5= 1@ )@ ¥) + V00" ¥) — (90" ) — (9" ), )]
= o [ (Oy) — (B (3.12)

If ¢ fulfills the Klein-Gordon equation, the right-hand side of (3.12) vanishes, and the
continuity equation (3.7) holds. However, the four-vector defined in (3.10) contains the
second problem:
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p = =4
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. . . B
can be positive or negative, depending on the values of ¢ and ;.

Since the Klein-Gordon equation denotes a partial differential equation (2nd order) of
hyperbolic type, one has the option to arbitrarily choose the functions

W(7,t = 0) and % (#,t = 0) (3.14)

at the starting time (¢ = 0), and thus obtain, e.g., negative values for p(Z,t = 0).
An interpretation of p as probability density would mean that the theory allows negative
probabilities. This is the problem of the indefinite probability density.
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The solution of both problems has an interesting historical development, which can briefly
be summarized as follows:

e 1928:  Dirac "invents” the Dirac equation. The probability density is positive;
however, negative energies are allowed (Proc. Roy. Soc. A117, 610-628).

e 1930: Dirac solves the problem of negative energies via the "hole” theory. An-
tiparticles are related to negative energy eigenstates (Proc. Cambridge Phil. Soc.
26, 376-381).

e 1934: Pauli and Weisskopf present a new interpretation of the Klein-Gordon
equation:  as field equation for a charged spin-0 field. p represents the charge
density. Instead through k°, the energy is given via 5 [ d*r || Vo 2 +m? |3
and thus per definition positive (Helv. Phys. Acta 7, 709-734).

e 1934: The Dirac equation acquires a field-theoretic interpretation: It does no

longer determine a probability amplitude, rather the field operator for a spin —%

field.

In the following, we concentrate on the first two topics, the last two are subjects of
quantum field theory.
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3.2 Nonrelativistic Limit of the Klein-Gordon Equa-
tion

We start from the form of the Klein-Gordon equation

2.2
(D + —mh; ) v =0 (3.15)

To study the nonrelativistic limit, we make the ansatz
Vi, 1) = (. ) exp(—zme’t), (3.16)

i.e. we split off a term containing the rest mass. In the nonrelativistic limit, the difference
of total energy E and rest mass mc? is supposed to be small. Thus define

E = F — ch (317)
with E' < mc?. Thus,
|zh | ~ E'p < mcp (3.18)
Now consider
9 . 2 .
aa_zf = (%—f - z%g@) exp(—%cht) ~ —i%g@ exp(—%cht)
0?1 0 (0p  mc? i,
_ " — _ _r s _ t
o2 ot (675 i ) expl= g met)
Zmc2 dp  mc*dp  mic! exp( ZmCQt)
~ |- — i — xp(——
R R R
mcdp  mie i
= [QZTE + 2 cp] exp(—ﬁmc t) (3.19)

Inserting this result in (3.15) gives

1[2mc&p c?
— |i

¢t i,
5 E—i_ » —2] exp(—ﬁmc t) (3.20)

90] wexp(—ﬁmc t) = lA -

-
from which follows
ih—— = ——V?p. (3.21)
m

This is the free Schrédinger equation for spinless particles. Since the type of particle
described by a wave equation does not depend upon whether the particle is relativistic or
nonrelativistic, the Klein-Gordon equation describes spin-0 particles.

44



3.3 Free Spin-0 Particles

For discussing the solution of the free Klein-Gordon equation (3.15) we return to the
interpretation of the current density (3.13), which we discarded due to p given in (3.13) not
being positive definite. The probability interpretation is not applicable. However, there
is the following alternative: One obtains a four-current charge density by multiplying the
current density j, in (3.13) with an elementary charge e

-/ Zeh * *
= 5 (W0 = V0,0, (3.22)
where o 5y o
, € * 7Y -
P = ome (ﬂj ot ot ) (3:23)
defines the charge density, and
o el .
j' = 5 (Ve — V) (3.24)

defines the charge-current density. The charge density (3.23) is allowed to be positive,
zero, or negative. This is consistent with the existence of particles and antiparticles in
the theory.

Let us now calculate the solution for free particles. A possible ansatz for the solution
for a free wave is given in (3.1)

U(z) = aexp (—%pw") (3.25)

where 1/hp, = k,. We had seen that because of (3.7) there exist two possible solutions
for a given momentum p, one with positive and one with negative energy. Consequently

A

(D xF[Bt)), (3.26)

4 (x) = ay exp(

where E, = +¢v/p? + m?c?. Inserting this into the expression for the density (3.23) gives

e‘Ep‘
mc?

PRLE T (3.27)

This suggests the following interpretation: ¢, specifies particles with charge +e and _

specifies particles with the same mass, but with charge —e. The general solution of the
wave equation will always be a superposition of both types of functions.

45



Let us now discretize the continuous plane wave by confining the wave to a cubic box
(normalization box) with box length L and demand periodic boundary conditions at the
box walls. This leads to

i

h

Un(x) = Ap)exp | (Pn - X F Epnt)} , (3.28)

where 5
Pn = %n, n = (ny,ne,n3), n; €N (3.29)

E,n =c\/p2 +m?c2 =E,. (3.30)

Here n is a (discrete) vector in the lattice space with axes ni,ng,ng. With (3.27) the
normalization factors A, are determined by the requirement that

and

ek,
Cz\An(i)\2L3. (3.31)

3 —
j:/Lsd zps(x) —j:m

Choosing the phase such that the amplitudes are real,

mc?
Anxy =/ T3 (3.32)
B me? i P
wn(:l:) - L3En exp [ﬁ(pn ‘X F nt)

The most general solution of the Klein-Gordon equation for positive/negative energy
spin-0 particles is then given by

and thus

. (3.33)

w_l_ — Zan’(l} (+):Zan m—CZeXp l(pn.X_Ent):|
. (ntn O\ e, PR
me? i
Vo= Nt = X any| pae e |3 (0nx + Ent)} | (3.34)

For neutral particles the Klein-Gordon field ¢ has to be real, see (3.23), i.e. * = .
Thus the wave for a neutral particle can be constructed as

1/)”(0) = % (T/Jn(+)(pn) + T/)n(_)(—pn))
- QZ’C;n (eXp [%(pn X — Ent)} + exp {%i(pn X+ Ent)D
N 2[”7;;,1 2 cos (%(p" X Ent)) - (3.35)
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Thus, with ¢,0) = ¥y follows p' = 0 and j'(x,?) = 0. Consequently, in this case there
is no conservation law.

The previous showed that relativistic quantum theory leads to new degrees of freedom
of particles. In a nonrelativistic theory, free spinless particles can propagate freely with
a well defined momentum p. In the relativistic case of free spinless particles, there exist
three solutions, which correspond to the electric charge (+,-,0) of the particles, for every
momentum p.

3.4 The Charged Klein-Gordon Field

In case of a complex, i.e. charged scalar field, the current is given through (3.22) with
dj* /0x* = 0 and a total charge

_ieh 3 *a_cp dp*
Q= /dx(go 8t_908t>' (3.36)

2mc?

To examine charged fields in some more detail, we decompose (z) into real and imaginary

components .
p(x) = —= (pr(x) + ia(x)) (3.37)

where ¢;(x) and @q(z) are real. If ¢(z) fulfills the Klein-Gordon equation, so do the
components ¢;(z) and py(x).

>

Conversely, the following is true: If two fields ¢;(z) and @o(z) separately fulfill a Klein-
Gordon equation with the same mass m = my; = msy, then the equations can be replaced
by one equation for a complex field, i.e.

L (1 +ign)
= — 1
2 \/5 ©1 ©2
1
= (o —i 3.38
@ ﬁ(% ©2) (3.38)
with
m2c2
m2c?\ |

By interchanging ¢ and ¢* in (3.36). we obtain the opposite charge. Hence ¢ and ¢*
characterize opposite charges. These studies can, e.g., be applied to the pion triplet
(rt, 7, m0).
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3.5 The Klein-Gordon Equation in Schrodinger Form

To demonstrate the new degree of freedom (charge) in a more distinct way, it is advanta-
geous to transform the Klein-Gordon equation (3.15), which is second order in time, into
two coupled differential equations which are first order in time. this is achieved by the
ansatz

Y= ptXx
9]
zha—zf = mc* (¢ — X) (3.40)

in which ¢ and aa—‘f are expressed as linear combination of ¢ and y. The two coupled

differential equations

L 0p h?
¥ - LA 2
zhat 5 (04 x) +mcyp
., O0x _ h? 2
ZTLE = %A(go +x) —mecx (3.41)

are equivalent to the Klein-Gordon equation (3.15), as can be shown by adding and
subtracting the two equations of (3.41).
Addition gives

., 0

ih= (@ +x) = me*(p = X), (3.42)

which leads to the trivial identity 0y /0t = 0/ 0t.
Subtraction gives

o h?
20 oy A 2 ‘ 4
tho (9 = x) = =5 D@ +x) +me(p + X) (3.43)
With (3.40) one obtains
o [ ih O 12
I " — ——A 2
! 8t<m028t> 2m Y+mey
h? 0%y 12
- 7 = __A 2
mec? Ot? 2m Y+ mey
1 0% m?c?
—— = AYp—- —— .44
2 Ot? ¥ h? v (344)

which is just the Klein-Gordon equation.

The coupled equations can be written in a more compact form. For this we introduce

wz<§> (3.45)
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and make use of the Pauli matrices, 7;, 1. However, here they do not act in spin-space,
but rather in the space introduced by (3.45). With this the coupled equations (3.41) can
be combined in a Schrodinger type equation

\\ .
ih%—t = H,7, (3.46)

where the Hamiltonian ﬁf for free particles is given by

A2
Hf = (7A'3 + MA—Q)Qp—m +$3m02

_ 11\ p 10 5
= (_1_1>%+<0_1>mc. (347)

Each component of the vector ¥ individually satisfies the Klein-Gordon equation. From

(3.46) follows
(z‘h% + ﬁf> (m% - Hf> = 0

0* .
(—rﬁﬁ — H?) = 0 (3.48)
With I:IJ% = cp? + m2c* follows
82
(—BQ@ — WA — m204> U =0, (3.49)

which is just the Klein-Gordon equation valid for each component of ¥. With this rep-
resentation, the expression for the density becomes especially simple. From (3.23) using

(3.40) one obtains
, _ ieh w*ﬁ_@b— o*
P = ome ot ot
2

= ;Z; (V™ — x) + (" — X))

= S +X)e =0 + (P + )@ — X))

= g(w*so - X*X)

A (3.50)

Similarly, the current vector is given in Schrodinger representation as

h
§ = o (WA (7 + i) VO — (VU )y (y + i) 0 (3.51)

2mi
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The normalization is given by
/de\IJT)%g\I’ = /d%(cp*cp - x*x) = £1

/dep'(x) = +e.

Let us consider free particles in this representation and write

= (2)4(z )l s

and substitute this ansatz into (3.47) and find

(7)= (5 ) (0) (0 &)me ()

which gives the two separate equations

ﬁZ

Ep = —((,0+X) +mc2<,0
2m
p* 2
Ey = —— -
X ST (¢ +x) —mex

o and x,o are therefore determined by the solution of the coupled equations

P’ P’
5o+ <E+—+mc2> Xo = 0
2m 2m

Since the determinant of the system (3.56) needs to vanish, it follows that
~9 2 A9\ 2
B2 ([ yme] + (L) =o,
2m 2m
from which one recoveries the relativistic energy momentum relation

E = +e\/p? + mc? = £E,.

Consider the positive energy solution £ = +E,:
From (3.53) we obtain

ot
‘I’(+)(p) = A ( (+) ) exp

X0

roox-50] = (00

20

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)



From (3.55) follows that

(Ep — mc2)g0§]+) = —(E,+ mc2)X(()+)
2
(+) _ me” + Ep (+) 3.60

so that, when choosing Xgﬂ = mc? — E,, it follows that

(+) 2
©p [ mc*+ E,
( e > = ( mc? — E, > : (3.61)
Eq. (3.52) allows to calculate the normalization constant A from
Al? [ ol §67) = [ L8 [+ By)? = (me? = ByY] =1 (3.62)

If the phase is chosen to be real, then

1

Ay = . (3.63)
W Vime, [IE,
In the other case, E = —E,, proceeding similarly leads to the wave function
(-) i ) (p)
\If()p:A_<%_ )exp[—p-x+Et}E<¢_p ) 3.64
(p) (=) XS ) h( »t) ! )(p) ( )
with )
- 2
0o [ mc” = £,
() - (s 069
and A(,) = A(+).

Consider the nonrelativistic limit, where E, ~ mc? + %. Then

(0] (et o
A(+)X(()+) VI3 \ (mc® — Ep)/\JAE,mc?
1

[ e )

VI3
- \/%(_1/4}1)/6)2)”@“\/%(3) (3.66)

%

Similarly

! ) | (3.67)



Thus, we see that in the nonrelativistic limit for states with positive charge the upper
component is large, and the lower one is small. For negative energies, we find the reverse
being true.

Charge conjugation follows in this case from comparing the expressions for the wave
functions in 3.59 for ¥(+)(p) with the corresponding expression for ¥(~)(p), 3.64.

¥ (p = ( ) (—p) ) _ ( X (p) > U (p), (3.68)

X (-p) ¢ % (p)
Thus, if
_ [ ¥
U = 3.69
(7] (3.69
represents a positive charge, then the state
~ ~ X*
CUC =Ty =70 = ( o > (3.70)

describes a particle with negative charge. Thus, ¥ is the charge-conjugate state of W.

Similarly,
(Yo)o =n(n¥) =19, (3.71)

i.e. ¥ is the charge-conjugate state of Uc.

Explicitly, charge conjugation implies the following transformations

ot? = X
NORIRC
P =& —P
+E, - —E, (3.72)

VSN

If the state ¥ describes a particle, then ¥ describes the corresponding antiparticle.
(Example: 7 and 77)

Neutral particles fulfill the requirement that they are charge-conjugate states to them-

selves, i.e.
Ve =71U* =aVl, (3.73)

where « has to be real. Remember, that the Klein-Gordon wave function ¥ = ¢ + x has
to be real. Thus, Sp = —Jy has to hold, as well as I(ayp) = S(ax), which can only be
true if « real. From (U¢)e = ¥ follows that

(Oé\I’)C = Tl(Oé\I’)* = aTI\II* = aaV¥ = \Il, (374)
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so that
=1 ; a==+l. (3.75)

Thus there exist two different kinds of neutral particles. To resolve this, one introduces a
new quantum number, the charge parity «. One has then

(a) Neutral particles with positive charge parity (o = +1)

Ue=nU*"=T or o=y

(b) Neutral particles with negative charge parity (o« = —1)

Ve =n0* = -V or ¢o*=—y

3.6 Free Spin-0 Particles in the Feshbach-Villard Rep-
resentation

The nonrelativistic limit of (3.66) and (3.67) indicate that positively charged particles have
in this limit a large upper component (/)| > |x(+)|), while negatively charged particles
have a large lower component (|x(7)| > |¢(7)]). Tt is tempting to find a representation in
which positve and negative energy solutions always take the form

0w = ow)~ (1) (3:76)

Such a representation was presented by H. Feshbach and F. Villard (Rev. Mod. Phys.
30, 24 (1958)). It can be established by a transformation

¢ = UT
ot = Uiyt (3.77)

where U is given by

5 _ L (m@+E) - (md-F,)
[ )

B \/dme2 B, _(mCQ - Ep) (mCQ + Ep)

= 1* ((m02 + E,) — 1i(mc® — Ep)) : (3.78)

\/Amc2 E,
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First, consider the effect of U applied on the states (+) (p) of (3.59) and ¥~ (p) of (3.64)

¢ (p) = UID(p)
mc” + E,

rm(m T oo i< )

mc” — E,

\/_1/4mc2E < (me? — E,) (m02+Ep)

= \/? < 0 >exp h(p X—Et)}
Similarly,
¢ (p) = UV(p) |
— \/_\/M<ZE _T_g >exp %(p-x+Ept)
= \/% ( (1) ) exp {ﬁ(p X+ Ept)} . (3.80)

So, U is the desired transformation. However, U is not unitary in the usual sense (i.e.
U~ # U'), since

R N 1
U_1:7'3U7'3: 11—
\/4mc2E,

By explicit calculation we see that

(me® + E,) + 7i(mc” - E,)] . (3.81)

UU' =1. (3.82)

The normalization of the ¢*)-functions follows from the normalization of ¥(*+) (3.52) as
+1 = /dgl‘\IfTTg\If
= [ @0 0) n(0)
= [ gl (0 U
_ / Bt (3.83)
Here we used that from (3.81) follows 730U~" = Uy and thus
U NRU =0 Y Un=U"Un=m1 (3.84)

o4

(mc? +E) — (mc* = E) ) <m62+E” )eXP {%(p-X—Ept)

(3.79)



Thus, we can define a generalized scalar product
(T[T, = /de\IfTTg\If (3.85)

so that from (3.83) follows
(T[T = (4]¢)s; (3.86)

i.e. the generalized scalar product is invariant under the transformation U. It seems
natural to call an operator A with the property

(W) = (Ag|Ad') (3.87)
¢-unitary. Such an operator fulfills the condition
Al = Al = A7 (3.88)
Since o
/ POt = / Brot Aty Ag (3.89)
and thus
ATngi = T3
mAlmA = 1 (3.90)

and thus 73ATm3 = A~! as required in (3.88). If A and 73 commute, then AT = A follows
from (3.88), i.e. the normal unitarity relation. With this the charge @ of a state ¥ can
be written as

Q=ec / PoUinl = e(U|T), (3.91)

The free Hamiltonian H from (3.47) takes in the Feshbach-Villard representation a par-
ticular simple form, R o
Hy=UHU ' = nE,, (3.92)

which can be shown by explicit calculation.

Thus the Klein-Gordon equation given in (3.46) as

ovr .
h— = H;VU 3.93

can be transformed by multiplication with U from the left to

_oUv

h = UH,U UV
"ot /
L, 0¢
ZTLE = T3Ep¢ (394)
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which is the Klein-Gordon equation in the Feshbach-Villard representation. This equation
has two different solutions for any given momentum p, namely one with +F, and one
with —F),.

A direct solution of (3.94) can be found by the ansatz

¢ = exp 7 (3.95)

= ( Z; ) : (3.96)

L0 (6 0
ih ( 9; ) = Ep< _52 ) (3.97)

1
p— .X
hp

with

Inserting this in (3.94) gives

and thus
zh% = B0
m% — _E0, (3.98)
Integration gives
i = Niexp —%Ept}
0 = Nyexp %Ept}. (3.99)

Here N; and N, are normalization constants which are determined by the normalization
condition (3.83) as

/d%qﬁTng) — /d%mrga — 41 (3.100)
yielding
1
|N1|? — | Ny |? :iv. (3.101)

This lead to the two independent solutions

1 i
( 0 ) exp [ﬁp SX — Ept} charge + 1

- 5-

( (1) ) exp [%p X+ Ept} charge — 1 (3.102)
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and each linear combination of type

n1 ¢ + nygl) (3.103)
with |n1|*> — |na|?> = 1 being a normalized eigenfunction of the momentum p with charge
+1 and each linear combination with |n;|* — |ny|* = —1 being a normalized solution with
charge -1.

3.7 Interpretation of One-Particle Operators in Rel-
ativistic Quantum Mechanics

The Schrédinger form of the free Klein-Gordon equation was given in (3.46) as

h — = H,U 3.104
with
. (2, 1)
U(Z,t) = ; 3.105
(&1) < X(7,1) (8.105)
and the free Hamiltonian
~ ﬁQ
H; = (73 + i) o T mc® 73 . (3.106)

With the help of (3.104) the vector W(Z,¢) may be evaluated at any later time ¢, if the
values ¥(Z,0) are known at t = 0. This can be expressed by the transformation

U(Z,t) = U(t) ¥(Z,0) (3.107)
with

2
- » H LAY
U(t) = exp (—% Hft> ~ 11 <— %) t+ <— %) o= (3108)

As in non-relativistic quantum mechanics, time dependence may either be expressed by
the state vectors W(Z,¢) (Schrodinger picture) or can be incorporated in the operators
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(Heisenberg picture). The change from the Schrédinger to Heisenberg picture is performed
by the transformations

Ui (7)

FH(

(t) V(Z,1) (3.109)

~
N—
I

which leave the scalar product invariant.

(W(,1) |F(O)] W'(7.1)) = (U(t) Lu(@ [F(0) U(t) Vy(2)) (3.110)
= (Wg(2) (U F(0)] Wy (2))
= (Unu(®) [Fu(t)] V) .
For the time independent H; of (3.106) follows
. dF od g un B i
e el iHy t/h iHy t/h
ih — ih — (e F(0) e ) (3.111)

= —H; F + F H; = [F,H

in analogy to non-relativistic quantum mechanics. From (3.112) follows that the physical
observation F' whose corresponding operator F' commutes with Hf, are constants of mo-
tion. This means that the expectation values of these operators are constant in time. One
of the basic postulates in non-relativistic quantum mechanics states that the eigenvalues
of an operator describe the measurable values of the corresponding physical quantity in
a state of the system. To satisfy this postulate in the relativistic theory, we must modify
the definitions of some of the operators.

Let us consider the energy of a system. The eigenvalues and eigenstates of the operator
Hy (3.106) are determined (in case of the free motion with momentum p) by

H;¥ = EV . (3.112)

The free motion had two solutions (see previous section)
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U\(F) = —— (“@ )exp (1 (ﬁ-:i’)) LA = +1 (3.113)

for the corresponding energies
Ey = NE, = Acy\/p*+mc?. (3.114)

E_ is negative and thus can not be interpreted as a one-particle energy, which must
always be positive. Here we need to remember the double meaning of the energy eigen-
values of the Hamiltonian in non-relativistic quantum mechanics: First, they represent
the energy of stationary states. Second, they characterize the time-evolution of the wave
function. We have already seen (3.53) that the eigenvalues E) of I:If represent the time

dependence of the wave functions in a relativistic theory (factor exp [—%Ept] ), i.e.,

U, (Z,t) =exp —% ﬁft} U,\(Z) = exp |— % )\Ept} U, (2) . (3.115)

The energy of these states is always positive and hence A independent. We can see this
from the following. The energy ¢ of a system in a stationary state is identical with the
mean value of the energy, i.e.,

£y = / Pz Ul 7 H 0, (3.116)
With H;Uy = E\Uy = AE, ¥ and [ d®*zW 70, = ), we have

ex = \E, / Po Ul 70, = N E, = B, . (3.117)

The energy is always positive and independent of A. Thus, the problem of the energy is
solved. The dual character of the eigenvalues of flf, i.e., as the characteristic factor of
the time-evolution and as an energy, evolves quite naturally in the relativistic quantum
theory. We can give the correct interpretation of the energies of the states by making use
of the canonical formalism, the energy operator is not ﬁf but 73 ﬁf (3.116)

In non-relativistic quantum mechanics, there is always a correspondence between a rela-

tion of operators and that of classical objects (measurable values). Example: Newton’s
equation of motion corresponds to the operator equation
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p 1 .

= = —[hH 3.118
o = 7 b 4] (3.118)
with H = - + U(Z), or
it i . a7
= (4. H = £ 3.119
o = o e = (3.119)

which corresponds to the classical relations between velocity and linear momentum. Since
these operators equations are of the same form as the classical equation, it is ensured that
the quantum mechanical expectation values satisfy the classical equations of motion. In
relativistic quantum theory, the situation is different. E.g., the expression for the ”velocity
operator” of a relativistic spin-0 particle was given by

d7 1 . p
Y s HA = (5 ) — 3.120
= A = G+ in) 2 (3.120)
while the classical relativistic velocity is given by
dx P p cp
bt = = 3.121
dt M Mc? E ( )
where M = W denotes the relativistic mass, i.e.,
s
mc? mc? 2 2
E = Mo = — — 1 — — 3.122
‘ 1 -z 1 -2\ i c? (8122
m2v? + m?c® (1 — Z—i)
= ¢
1=

is the total energy of a free particle with rest mass m. Obviously, the right-hand side of
(3.120) is different from the left-hand side. Furthermore, the eigenvalues of the matrix

T3 + 0Ty = (_11 _11> (3.123)

60



are zero. This means that the eigenvalues of the velocity operator (3.120) are also zero.
Hence, we again notice that, in general within a relativistic theory, the expectation values
of a reasonably constructed operator are not the same as the values of the corresponding
classical quantity. Thus, we conclude that not all operators of the non-relativistic theory
can be transferred to a relativistic one-particle theory. The reason for this is the restriction
to the one-particle concept. In relativistic quantum mechanics, the consistency of the one-
particle description is limited. To be mathematically precise, the formulation of the
relativistic theory within a one-particle concept implies the condition that the only valid
operators are those which do not mix different charge states. Such operators are called
even operators or true one-particle operators.

More formally, an operator Oeven is called even if

~

Oepen ¥F = W& (3.124)

where U'(#) are functions with positive and negative frequencies. Similarly, an operator
Ooda U'£) is called odd if

~

Opgg ¥ = ¢"F) (3.125)

Thus, the Hamiltonian of the free Klein-Gordon equation in the Schrédinger representa-
tion, Hy, and the momentum operator p = —ih'V are even operators.

In general, an operator can be split into an even and odd part

~

0O = Oeven + Oodda (3126)

thus, one can separate from any given operator O a true one-particle operator Ogyep,. In
matrix notation

O — (aél AU ) N <AU a12> = Ouyen + Ouaa - (3.127)
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3.8 Klein-Gordon Equation with Interaction

To introduce electromagnetic interactions into the KG equation, we use the socalled ‘min-
imal substitution’, known from EM

pt— pt — eAH (3.128)

where A" is a four-vector potential. Inserting this into the KG equation (3.15) gives

l— (ia%u - eAu> (i% - eA“) + mQ] () =0 (3.129)

(0,0" +m? + U(z)| ¥(z) =0, (3.130)

or

where the generalized potential U(x) consists of a scalar and vector part

8 6
. o . w 2 Al
1/(.(8) = ze—“A —|—Z€A —1‘” —e“A AH

ox
0 0
= VR
i ViVt S (3.131)

Note that the symmetrized from of the vector terms is required in order to maintain the
hermicity of the interaction. In the most general case, the scalar, S, and vector, V#*, parts
of the potential can be independent interactions. For the electromagnetic case they are
related by

S = A4,
VE = Al (3.132)

Using the ‘standard’ form of A* = (®, A), the KG equation can be written as

<i% - e<1>> U(x, 1) = [(—iV — eA?)? + m?| U(x, 1) (3.133)

Substituting the positive and negative energy solutions (3.23) into (3.133) gives

(B, ¥ e®)’0H) (x, 1) = [(p F eA)? + m?| ¥ (x, 1) (3.134)

Again, once can use (3.134) as starting point and use it with more general potentials V’
and A. For example, let A =0 and V = e®, i.e. allow only a scalar potential V. Then
(3.134) gives

(B> +V? = 2EV)U = (p* + m*) ¥ (3.135)
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Substituting the relation E62 = k? + m? between energy and wave vector and using
p — —iV leads to

(V2+ k) = (2EV — V)Y, (3.136)
which looks like a Schrodinger equation with the equivalent energy dependent potential
2EV — V2
VeE = T (3.137)
2m

Another type of potential to consider is the Lorentz scalar, which adds to the mass, since
pp, = m?. The KG equation with coupling to the scalar potential is

E*W = [p? + (m + S)?] ¥ (3.138)

63



