1. (4 p)
Show that in stationary state perturbation theory, if the Hamiltonian can be written as
\[H = H_0 + H' \]
with \(H_0 \phi_0 = \varepsilon_0 \phi_0 \), then the correction \(\Delta E_0 \) is given by
\[\Delta E_0 \approx \langle \phi_0 | H' | \phi_0 \rangle \]
(1)

2. (5 p)
A particle of mass \(m \) moves one-dimensionally in the oscillator potential \(V(x) = \frac{1}{2}m\omega^2 x^2 \).
In the nonrelativistic limit, where the kinetic energy \(T \) and the linear momentum \(p \) are related by \(T = \frac{p^2}{2m} \), the ground state energy is well known to be \(\frac{1}{2}\hbar\omega \).
Allow for relativistic corrections in the relation between \(T \) and \(p \) and compute the ground state level shift \(\Delta E \) to order \(1/c^2 \).
Hint: The relativistic kinetic energy is given as \(T \equiv E - mc^2 \), where \(E \) is the total energy.