1.
(a) [4 pts]
The long range part of the nuclear force is determined by the Yukawa potential
\[V(r) = \frac{\beta}{r} e^{-\mu r}, \]
where \(\beta \) is the strength (or coupling constant) and \(\mu \) is given through the pion mass via \(\mu = m_{\pi} \sqrt{\alpha} \). Show that in the Born approximation the differential cross section for the scattering vector \(\vec{q} = \vec{p}' - \vec{p} \) is given by
\[\frac{d\sigma}{d\Omega} = \left(\frac{2m\beta}{\hbar^2(q^2 + \mu^2)} \right)^2 \]
(b) [3 pts]
Use the result from (a) to determine the properties of the differential cross section in forward direction as well as for the case \(E \rightarrow 0 \).

(c) [4 pts]
If you use the Coulomb potential \(V^C = -Ze^2/r \) in the expression for the Born approximation for the scattering amplitude, you obtain a non-existing expression (which one?). One can apply the mathematical trick of solving for a screened Coulomb potential of the form
\[V^R(r) = -\frac{Ze^2}{r} e^{-r/R} \]
and then consider the limit \(R \rightarrow \infty \).
Derive the scattering amplitude for the screened Coulomb potential and consider the limit \(R \rightarrow \infty \) to obtain the Coulomb Born amplitude and from it the classical Rutherford cross section
\[\frac{d\sigma^b}{d\Omega} = \frac{Z^2e^4m^2}{4\mu^2 \sin^2 \frac{\theta}{2}} \]
2. Neutrons of mass m and energy E are incident on a spherically symmetric, square-well, attractive potential of depth W and range a, representing the nuclear force between the neutron and a nucleus. If the velocity $v \ll \hbar/ma$, show that

(a) [3 pts]
The scattering is spherically symmetric.

(b) [4 pts]
The s-wave phase shift δ_0 satisfies

$$j \tan(ka + \delta_0) = k \tan ja$$

where

$$k^2 = \frac{2mE}{\hbar^2}, \quad j^2 = \frac{2m(W + E)}{\hbar^2}$$

(c) [4 pts]
The scattering length is given by

$$b = a \left(1 - \frac{\tan y}{y} \right),$$

where

$$y = \sqrt{2mWa/\hbar}$$

(d) [3 pts]
Calculate the total scattering cross-section as E tends to zero.

(e) [5 pts]
If the value of y for the potential lies in the range $(n - \frac{1}{2})\pi < Y < (n + \frac{1}{2})\pi$, where n is an integer, show that, for a neutron in this potential, there are n bound states (i.e. states of negative energy) with zero orbital angular momentum.

(f) [4 pts]
Show that, if the scattering length is positive, there is at least one bound state.