1. In a one-dimensional problem, consider a particle subject to potential energy \(V(x) = -fx \), where \(f \) is a positive constant. For what physical problems might this potential be relevant?

 (a) **Ehrenfest’s theorem:** Determine the time derivatives of the expectation values of the position \(x \) and the momentum \(p \) of the particle.

 (b) Integrate the equations you obtain part (a); compare with the classical motion.

 (c) Show that \(\langle (\Delta p)^2 \rangle = \langle p^2 \rangle - \langle p \rangle^2 \) does not vary over time. Useful relation: \([AB, C] = A[B, C] + [A, C]B\).

2. Two Hermitian operators anticommute:

\[
\{A, B\} = AB + BA = 0.
\]

Is it possible to have a simultaneous (that is, common) eigenket of \(A \) and \(B \)? Prove or illustrate your assertion. Hint: Examining \(\langle a| \{A, B\} |a'\rangle \) will be helpful.

3.

The observable \(A \) has eigenstates \(|1\rangle\) and \(|2\rangle\) and the hamiltonian operator is \(H = C (|1\rangle\langle 2| + |2\rangle\langle 1|) \), where \(C \) is a constant.

 (a) Derive the energy eigenstates and their eigenvalues.

 (b) For a system in state \(|1\rangle\) at \(t = 0 \), find the state vector (in Schrödinger picture) for \(t > 0 \) and the corresponding probability for it to be in state \(|2\rangle\).

 (c) What physical situation can this describe? What is then \(A, H \) and \(C \)?