The Study of the Be(p,n) and Be(d,n) Source Reactions

Thomas N. Massey, Devon K. Jacobs,
Saleh I. Al-Quraishi, Steven M. Grimes,
Charles E. Brient

Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701

Wiliam B. Howard

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Jacquelyn C. Yanch

Department of Nuclear Engineering and Whitaker College of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Application of the Be\text{(p,n)}
Stopping Target Source Reaction to Medical Physics

Most cancer treatment is based on gamma rays which have a low Linear Energy Transfer\text{(LET)}. Neutrons produce higher LET through the \text{(n,p)} and \text{(n,\alpha)} reactions. The high LET radiation is more damaging to the tumor compared to the surrounding healthy tissue than low LET radiation. The high LET radiation is also more localized to the tumor area.

Boron Neutron Capture Therapy

Some isotopes, such as \(^{10}\text{B}\), have a positive Q-value and a large low energy cross section for \text{(n,\alpha)}. A low energy neutron of 0.1 MeV can produce a \(~2.5\ MeV\) alpha particle. These low energy neutrons produce little damage to normal tissue. If the boron can be introduced into the tumor selectively the dose is highly concentrated.

The Be\text{(p,n)} reaction is currently being used as a source of the low energy neutrons needed by Boron Neutron Capture Therapy.
Total Cross Section Measurements

\(^9 \text{Be}(p,n) \)

Cross Section (mb)

- J. B. Marion [1]
- Blair et al. [3] renormalized
- Siskin et al. [4]

Best Estimate Cross Section

![Graph showing total cross section measurements for \(^9 \text{Be}(p,n) \) with various data points from different sources and a best estimate cross section line.](attachment://figure.png)
27Al(d,n)

$E_d = 7.44$ MeV

$\theta = 120^\circ$
Lithium Glass Efficiency

- bare detector
- 1 inch of lead in front

Efficiency vs. E_n (MeV)
$^9\text{Be}(p,n) \ E_p = 3.7 \text{ MeV}$
9Be(p,n) $E_p = 4.0$ MeV

neutrons/(MeV sr µC)

E_n (MeV)

- 0°
- 60°
- 110°
- 148°
\[\frac{N_{\gamma}(\theta=55^\circ)}{N_n} \]

- **Li + p**
- **Be + p**

\[E_p \text{ (MeV)} \]
Measurements of Be(p,n) Source Reaction

- Excitation function measurements from 3.0 to 5.0 MeV.
- Angular distributions at 3.8 and 4.0 MeV.
- Determined total neutron cross section at 3.8 and 4.0 MeV.
- Verified previous total neutron cross section measurements.
- Calculated the number of gammas to neutron based upon both previous and current results.
Motivation for Measurement of Be(d,n)Source Reaction

- Neutron Radiography application needed improved neutron energy spectra and angular distributions.
- This reaction is currently used for the integral testing of nuclear data.
- Only zero degrees and a few angular distributions measured previously.
$^9\text{Be}(\text{d},\text{n})$

$\theta = 0^\circ$

$E_d = 7.0 \text{ MeV}$

neutrons/(μC sr MeV)

$E_n (\text{MeV})$
\(^9 \text{Be}(d,n) \)

\(\theta = 0^\circ \)

![Graph](image)
\(^9 \text{Be(d,n)} \)

\(E_d = 3.0 \text{ MeV} \)
$^{9}\text{Be}(d, n)$

$E_d = 7.0 \text{ MeV}$
Results of Measurement of Be(d,n) Thick Target Source Reaction

- Neutron Energy Spectra Angular distributions at 3.0 and 7.0 MeV

- Excitation function of the Neutron Energy Spectra from 3.0 and 7.0 MeV

- Comparison with results from Meadows show a difference in the results at low energies and two peaks in the neutron energy spectra which are likely to associated with implanted deuterons via the d(d,n) reaction.