Phys251 Fall 2002 Quiz 1 on Chapters 1,2
Show your work to get partial credit.

Name: Key
SSN: ________________

1. (1 pt) The *System International* uses which of the following system of units:
 (a) CKS (b) MGS (c) CGM (d) MKS (e) CBS (f) NBA

2. (1 pt) If \(x \) has dimensions of length, \(A \) has dimensions of area, \(t \) has dimensions of time, \(v \) has dimensions of length per time, and \(a \) has dimensions of length per time squared, which of the following equations is dimensionally *incorrect*?
 (a) \(x = vt \) (b) \(x = \frac{1}{2} at^2 \) (c) \(v/A \) (d) \(A - x^2 = t \)

3. (1 pt) How many significant figures are there in the number 0.43790?

 5

4. (1 pt) What is \(\frac{2.2 \times 6.55}{2} \) using correct significant figures and in scientific notation?

 \[1.441 \times 10^1 \Rightarrow 1.4 \times 10^1 \]

5. (1 pt) Convert 3.456 inches to centimeters keeping the correct number of significant figures. (1 inch = 2.54 cm)

 \[3.456 \text{ in} \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right) \]

 \[= 8.78 \text{ cm} \]

 but

 8.778 cm also ok in this case because 2.54 is exact

 ie. \(\frac{2.540}{4 \text{ sig figs}} \)
The following applies to questions 6, 7, and 8.

A glider moves along an inclined air track with a constant acceleration a (which could be negative). It is projected from the start of the track ($x=0$) with an initial velocity v_0. At time $t = 3.00$ s, it is at $x = 90.0$ cm and is moving along the track at velocity $v = 25.0$ cm/s. The x-axis lies along the inclined track; just consider this a one-dimensional problem (use 1-D equations with constant acceleration).

6. (2 pts) Draw the position x and velocity v as functions of time t (1 point each correct graph).

\[x_0 = 0 \]
\[v_0 = v_0 \]
\[a \cdot t = 3.00 \text{ s}, \quad x = 90.0 \text{ cm}, \quad v = 25.0 \text{ cm/s} \]

7. (2 pts) Find the initial speed v_0.

\[\Delta x = \frac{1}{2} (v_0 + v) \Delta t \]
\[v_0 + v = \frac{2 \Delta x}{\Delta t} \]
\[v_0 = \frac{2 \Delta x}{\Delta t} - v = \frac{2(90.0 \text{ cm})}{3.00 \text{ s}} - 25.0 \text{ cm/s} \]
\[v_0 = 25.0 \text{ cm/s} \]

8. (1 pt) Find the acceleration a.

\[v = v_0 + at \]
\[\Rightarrow a = \frac{v - v_0}{t} = \frac{25.0 - 35.0 \text{ cm/s}}{3.00 \text{ s}} \]
\[a = -3.33 \text{ cm/s}^2 \]