Phys. 611: Homework I

due January 16, 2004

1. Average values and Root-Mean-Square Deviation (2 pts each)
(a) The function of displacement of the classical harmonic oscillator is given by

\[x(t) = A \sin(\omega t + \phi). \]

Calculate the average values

\[\overline{x^2} = \frac{\int_0^T dt x^2(t)dt}{\int_0^T dt} \quad \text{and} \quad \overline{x} = \frac{\int_0^T dt x(t)}{\int_0^T dt} \]

(1)

and the corresponding values for \(\overline{p^2} \) and \(\overline{p} \).

(b) Calculate the root-mean square deviation of \(x \) and \(p \), i.e.

\[\Delta x = \sqrt{\overline{x^2} - \overline{x}^2} \quad \text{and} \quad \Delta p = \sqrt{\overline{p^2} - \overline{p}^2} \]

(2)

(c) Using Bohr's quantum condition

\[\int_0^T dx \ p = \int_0^T dt \ p \dot{x} = nh \]

(3)

find the relation for \(\Delta x \cdot \Delta p \) and discuss the meaning of this result as far as classical mechanics and quantum mechanics are concerned.

2. Matrix Mechanics (2 pts each)
The Hamilton operator \(H \) of an harmonic oscillator is given by

\[H = \frac{1}{2} P^2 + \frac{1}{2} X^2. \]

(4)

In the Heisenberg formulation of quantum mechanics the operators \(P, X, \) and \(H \) are expressed as matrices. \(X \) and \(P \) satisfy the commutation relations

\[[X, P] = i \mathbf{1} \]

(5)

and define the matrix \(A = \frac{i}{\sqrt{2}}(P - iX) \) and its hermitian conjugate \(A^\dagger = \frac{1}{\sqrt{2}}(P + iX) \). Show that:

(a) the matrices \(A \) and \(A^\dagger \) satisfy the relation \([A, A^\dagger] = \mathbf{1} \).
(b) the matrix H can be expressed as

$$H = \frac{1}{2} (AA^\dagger + A^\dagger A).$$

(c) $[A, H] = A$ and $[A^\dagger, H] = -A^\dagger$.

d) starting from the relation

$$[X, P] = c1 \quad (c \in \mathbb{C})$$

the dimension of the matrices X and P has to be infinite.

e) the infinite dimensional matrices

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 0 & \sqrt{2} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & \sqrt{3} & 0 & \sqrt{4} & \cdots \\ 0 & 0 & 0 & \sqrt{4} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

and

$$P = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 & 0 & 0 & \cdots \\ 1 & 0 & -\sqrt{2} & 0 & 0 & \cdots \\ 0 & \sqrt{2} & 0 & -\sqrt{3} & 0 & \cdots \\ 0 & 0 & \sqrt{3} & 0 & -\sqrt{4} & \cdots \\ 0 & 0 & 0 & \sqrt{4} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

satisfy the relation $[X, P] = i1$.

(f) Find the eigenvalues of the matrix $H = \frac{1}{2} (P^2 + X^2)$ using the above definitions of X and P, and compare them with the result of the usual solutions of the quantum mechanical harmonic oscillator functions.

3. Matrix Mechanics II (2 pts each)

Let A be the infinite dimensional matrix

$$A_{nm} = \begin{cases} \sqrt{n} & \text{for } n + 1 = m \\ 0 & \text{otherwise} \end{cases} \quad n, m = 1, 2, 3, \ldots \infty,$$

and $N = A^\dagger A$.

(a) Show: (i) $[A, A^\dagger] = 1$, and (ii) $[A, N] = A$

(b) Calculate the elements of N explicitly

2